Title of article :
Calogero-Moser and Toda systems for twisted and untwisted affine Lie algebras Original Research Article
Author/Authors :
Eric DʹHoker، نويسنده , , D.H. Phong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
30
From page :
611
To page :
640
Abstract :
The elliptic Calogero-Moser Hamiltonian and Lax pair associated with a general simple Lie algebra G are shown to scale to the (affine) Toda Hamiltonian and Lax pair. The limit consists in taking the elliptic modulus τ and the Calogero-Moser couplings m to infinity, while keeping fixed the combination M = m eiδθτ for some exponent δ. Critical scaling limits arise when 1/δ equals the Coxeter number or the dual Coxeter number for the untwisted and twisted Calogero-Moser systems respectively; the limit consists then of the Toda system for the affine Lie algebras G(1) and (G(1))V. The limits of the untwisted or twisted Calogero-Moser system, for δ less than these critical values, but non-zero, consists of the ordinary Toda system, while for δ = 0, it consists of the trigonometric Calogero-Moser systems for the algebras G and GV respectively.
Journal title :
Nuclear Physics B
Serial Year :
1998
Journal title :
Nuclear Physics B
Record number :
881050
Link To Document :
بازگشت