Title of article :
Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges Original Research Article
Author/Authors :
P.J. Forrester، نويسنده , , T. Nagao، نويسنده , , G. Honner، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
For the orthogonal-unitary and symplectic-unitary transitions in random matrix theory, the general parameter dependent distribution between two sets of eigenvalues with two different parameter values can be expressed as a quaternion determinant. For the parameter dependent Gaussian and Laguerre ensembles the matrix elements of the determinant are expressed in terms of corresponding skew-orthogonal polynomials, and their limiting value for infinite matrix dimension are computed in the vicinity of the soft and hard edges respectively. A connection formula relating the distributions at the hard and soft edge is obtained, and a universal asymptotic behaviour of the two point correlation is identified.
Keywords :
Random matrices , Quantum chaos , Fokker-Planck equation
Journal title :
Nuclear Physics B
Journal title :
Nuclear Physics B