Title of article :
Algebraic Bethe ansatz for the gl(1|2) generalized model and Lieb–Wu equations Original Research Article
Author/Authors :
Frank G?hmann، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
18
From page :
501
To page :
518
Abstract :
We solve the gl(1|2) generalized model by means of the algebraic Bethe ansatz. The resulting eigenvalue of the transfer matrix and the Bethe ansatz equations depend on three complex functions, called the parameters of the generalized model. Specifying the parameters appropriately, we obtain the Bethe ansatz equations of the supersymmetric t-J model, the Hubbard model, or of Yangʹs model of electrons with delta interaction. This means that the Bethe ansatz equations of these (and many other) models can be obtained from a common algebraic source, namely from the Yang–Baxter algebra generated by the gl(1|2) invariant R-matrix.
Journal title :
Nuclear Physics B
Serial Year :
2002
Journal title :
Nuclear Physics B
Record number :
883549
Link To Document :
بازگشت