Title of article :
A multifacility location problem on median spaces Original Research Article
Author/Authors :
Victor Chepoi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Abstract :
This paper is concerned with the problem of locating n new facilities in the median space when there are k facilities already located. The objective is to minimize the weighted sum of distances. Necessary and sufficient conditions are established. Based on these results a polynomial algorithm is presented. The algorithm requires the solution of a sequence of minimum-cut problems. The complexity of this algorithm for median graphs and networks and for finite median spaces with ¦V¦points is O(¦V¦3 + ¦V¦ψ(n)), where ψ(n) is the complexity of the applied maximum-flow algorithm. For a simple rectilinear polygon P with N edges and equipped with the rectilinear distance the analogical algorithm requires O(N + k(logN + logk + ψ(n))) time and O(N + kψ(n)) time in the case of the vertex-restricted multifacility location problem.
Journal title :
Discrete Applied Mathematics
Journal title :
Discrete Applied Mathematics