Title of article :
Asymptotic results on suborthogonal
Author/Authors :
Sven Hartmann، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
10
From page :
311
To page :
320
Abstract :
A G→-decomposition of a complete digraph D→n is a partition of D→n into isomorphic copies (called pages) of G→. A G→-decomposition is said to be suborthogonal if the union of any two distinct pages contains at most one pair of reverse arcs. Wilson (Proceedings of the fifth British Combinatorial Conference, 1975, pp. 647–659) proved in 1975 that a G→-decomposition exists for almost all integers n satisfying certain necessary conditions. In this paper we shall prove that under the same conditions there exists even a suborthogonal G→-decomposition.
Keywords :
Edge partition , Suborthogonal decomposition , Complete digraph
Journal title :
Discrete Applied Mathematics
Serial Year :
1999
Journal title :
Discrete Applied Mathematics
Record number :
884955
Link To Document :
بازگشت