Title of article :
Pancyclicity and NP-completeness in planar graphs Original Research Article
Author/Authors :
Ming Chu Li، نويسنده , , Derek G. Corneil، نويسنده , , Eric Mendelsohn، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
7
From page :
219
To page :
225
Abstract :
A graph is called v-pancyclic if it contains a cycle of length l containing a given vertex v for 3⩽l⩽n, and a graph G is called vertex pancyclic if G is v-pancyclic for all v. In this paper, we show that it is NP-complete to determine whether a 3-connected cubic planar graph is v-pancyclic for given vertex v, it is NP-complete to determine whether a 3-connected cubic planar graph is pancyclic, and it is NP-complete to determine whether a 3-connected planar graph is vertex pancyclic. We also show that every maximal outplanar graph is vertex pancyclic.
Keywords :
Pancyclicity , Vertex pancyclicity , Planar graphs , Complexity , NP-completeness
Journal title :
Discrete Applied Mathematics
Serial Year :
2000
Journal title :
Discrete Applied Mathematics
Record number :
885005
Link To Document :
بازگشت