Title of article :
Chordality and 2-factors in tough graphs Original Research Article
Author/Authors :
D. Bauer، نويسنده , , G.Y. Katona، نويسنده , , D. Kratsch، نويسنده , , H.J. Veldman، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
7
From page :
323
To page :
329
Abstract :
A graph G is chordal if it contains no chordless cycle of length at least four and is k-chordal if a longest chordless cycle in G has length at most k. In this note it is proved that all 32-tough 5-chordal graphs have a 2-factor. This result is best possible in two ways. Examples due to Chvátal show that for all ε>0 there exists a (32−ε)-tough chordal graph with no 2-factor. Furthermore, examples due to Bauer and Schmeichel show that the result is false for 6-chordal graphs.
Keywords :
Toughness , Chordal graphs , 2-factors
Journal title :
Discrete Applied Mathematics
Serial Year :
2000
Journal title :
Discrete Applied Mathematics
Record number :
885031
Link To Document :
بازگشت