Title of article :
On the fractal structure of the rescaled evolution set of Carlitz sequences of polynomials Original Research Article
Author/Authors :
F. von HaeselerA. Barbé and F. von Haeseler، نويسنده , , Peitgen، نويسنده , , G. Skordev، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Abstract :
Self-similarity properties of the coefficient patterns of the so-called m-Carlitz sequences of polynomials are considered. These properties are coded in an associated fractal set – the rescaled evolution set. We extend previous results on linear cellular automata with states in a finite field. Applications are given for the sequence of Legendre polynomials and sequences associated with the zero Bessel function.
Keywords :
Lucas property , self-similarity , Legendre polynomials , m-automaticity , Zero Bessel function
Journal title :
Discrete Applied Mathematics
Journal title :
Discrete Applied Mathematics