Title of article :
An asymmetric analogue of van der Veen conditions and the traveling salesman problem Original Research Article
Author/Authors :
Yoshiaki Oda، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
14
From page :
279
To page :
292
Abstract :
In (J.A.A. van der Veen, SIAM J. Discrete Math, 7, 1994, 585–592), van der Veen proved that for the traveling salesman problem which satisfies some symmetric conditions (called van der Veen conditions) a shortest pyramidal tour is optimal. From this fact, an optimal tour can be computed in polynomial time. In this paper, we prove that a class satisfying an asymmetric analogue of van der Veen conditions is polynomially solvable. An optimal tour of the instance in this class forms a tour which is an extension of pyramidal ones.
Keywords :
Polynomially solvable classes , The traveling salesman problem , A pyramidal tour
Journal title :
Discrete Applied Mathematics
Serial Year :
2001
Journal title :
Discrete Applied Mathematics
Record number :
885188
Link To Document :
بازگشت