Title of article :
Heredity of the index of convergence of the line digraph
Author/Authors :
Weigen Yan، نويسنده , , Fuji Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
8
From page :
681
To page :
688
Abstract :
Let D be a digraph, and let Ln(D) and k(D) denote the nth iterated line digraph of D and the index of convergence of D, respectively. We prove that if D contains neither sources nor sinks, then: (1) k(Ln(D))=k(D)=0 if every connected component of D is a directed cycle. (2) k(Ln(D))=k(D)+n if there exists at least one connected component of D that is not a directed cycle. Finally, we prove that if D has no sources or no sinks then k(D)⩽k(L(D))⩽k(D)+1.
Keywords :
Iterated line digraph , Period , Index of convergence , Heredity , Adjacency matrix
Journal title :
Discrete Applied Mathematics
Serial Year :
2003
Journal title :
Discrete Applied Mathematics
Record number :
885715
Link To Document :
بازگشت