Title of article :
Lift and project relaxations for the matching and related polytopes Original Research Article
Author/Authors :
Néstor E. Aguilera، نويسنده , , Silvia M. Bianchi، نويسنده , , Graciela L. Nasini، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
20
From page :
193
To page :
212
Abstract :
We compare lift and project methods given by Lovász and Schrijver (the N+ and N procedures) and by Balas, Ceria and Cornuéjols (the disjunctive procedure) when working on the matching, perfect matching and covering polytopes. When the underlying graph is the complete graph of n=2s+1 nodes we obtain that the disjunctive index for all problems is s2, the N+-index for the matching and perfect matching problems is s (extending a result by Stephen and Tunçel), the N-index for the perfect matching problem is s, and the N+ and N indices for the covering problem and the N-index for the matching problem are strictly greater than s.
Keywords :
Polyhedral combinatorics , Sequential tightening procedures , covering , Matching
Journal title :
Discrete Applied Mathematics
Serial Year :
2004
Journal title :
Discrete Applied Mathematics
Record number :
885749
Link To Document :
بازگشت