Title of article :
On the complexity of the approximation of nonplanarity parameters for cubic graphs Original Research Article
Author/Authors :
Luerbio Faria، نويسنده , , Celina M. Herrera de Figueiredo، نويسنده , , Candido F.X. Mendonça، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
16
From page :
119
To page :
134
Abstract :
Let G=(V,E) be a simple graph. The NON-PLANAR DELETION problem consists in finding a smallest subset E′⊂E such that H=(V,E⧹E′) is a planar graph. The SPLITTING NUMBER problem consists in finding the smallest integer k⩾0, such that a planar graph H can be defined from G by k vertex splitting operations. We establish the Max SNP-hardness of SPLITTING NUMBER and NON-PLANAR DELETION problems for cubic graphs.
Keywords :
Maximum planar subgraph , Complexity classes , Computational difficulty of problems , Topological graph theory , Splitting number
Journal title :
Discrete Applied Mathematics
Serial Year :
2004
Journal title :
Discrete Applied Mathematics
Record number :
885888
Link To Document :
بازگشت