Title of article :
Fun-Sort—or the chaos of unordered binary search Original Research Article
Author/Authors :
Therese Biedl، نويسنده , , Timothy Chan، نويسنده , , Erik D. Demaine، نويسنده , , Rudolf Fleischer، نويسنده , , Mordecai Golin، نويسنده , , James A. King، نويسنده , , J.Ian Munro، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
6
From page :
231
To page :
236
Abstract :
Usually, binary search only makes sense in sorted arrays. We show that insertion sort based on repeated “binary searches” in an initially unsorted array also sorts n elements in time Θ(n2 log n). If n is a power of two, then the expected termination point of a binary search in a random permutation of n elements is exactly the cell where the element should be if the array was sorted. We further show that we can sort in expected time Θ(n2 log n) by always picking two random cells and swapping their contents if they are not ordered correctly.
Keywords :
Insertion-sort , Oblivious sorting , Binary search
Journal title :
Discrete Applied Mathematics
Serial Year :
2004
Journal title :
Discrete Applied Mathematics
Record number :
885973
Link To Document :
بازگشت