Title of article :
Np-hardness proof and an approximation algorithm for the minimum vertex ranking spanning tree problem Original Research Article
Author/Authors :
Keizo Miyata، نويسنده , , Shigeru Masuyama، نويسنده , , Shin-ichi Nakayama، نويسنده , , Liang Zhao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
9
From page :
2402
To page :
2410
Abstract :
The minimum vertex ranking spanning tree problem (MVRST) is to find a spanning tree of G whose vertex ranking is minimum. In this paper, we show that MVRST is NP-hard. To prove this, we polynomially reduce the 3-dimensional matching problem to MVRST. Moreover, we present a image-approximation algorithm for MVRST where image is the minimum diameter of spanning trees of G.
Keywords :
Vertex ranking , Graph theory , Spanning tree , NP-hard , Computational complexity , Approximation algorithm
Journal title :
Discrete Applied Mathematics
Serial Year :
2006
Journal title :
Discrete Applied Mathematics
Record number :
886374
Link To Document :
بازگشت