Title of article :
Mutual exclusion scheduling with interval graphs or related classes. Part II Original Research Article
Author/Authors :
Frederic Gardi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
This paper is the second part of a study devoted to the mutual exclusion scheduling problem. Given a simple and undirected graph G and an integer k, the problem is to find a minimum coloring of G such that each color is used at most k times. The cardinality of such a coloring is denoted by image. When restricted to interval graphs or related classes like circular-arc graphs and tolerance graphs, the problem has some applications in workforce planning. Unfortunately, the problem is shown to be image-hard for interval graphs, even if k is a constant greater than or equal to four [H.L. Bodlaender, K. Jansen, Restrictions of graph partition problems. Part I. Theoret. Comput. Sci. 148 (1995) 93–109]. In this paper, the problem is approached from a different point of view by studying a non-trivial and practical sufficient condition for optimality. In particular, the following proposition is demonstrated: if an interval graph G admits a coloring such that each color appears at least k times, then image. This proposition is extended to several classes of graphs related to interval graphs. Moreover, all our proofs are constructive and provide efficient algorithms to solve the MES problem for these graphs, given a coloring satisfying the condition in input.
Keywords :
Interval graphs , Graph algorithms , Chromatic scheduling , Workforce planning , Bounded coloring
Journal title :
Discrete Applied Mathematics
Journal title :
Discrete Applied Mathematics