Title of article :
The extent to which triangular sub-patterns explain minimum rank Original Research Article
Author/Authors :
Michael I. Gekhtman and Charles R. Johnson، نويسنده , , Joshua A. Link، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
15
From page :
1637
To page :
1651
Abstract :
For any zero–nonzero pattern of a matrix, the minimum possible rank is at least the size of a sub-pattern that is permutation equivalent to a triangular pattern with nonzero diagonal. For certain numbers of rows and columns, the minimum rank of a pattern is k only when there is a k-by-k such triangle. Here, we complete the determin
Keywords :
Triangular patterns , Minimum rank , Schur complement
Journal title :
Discrete Applied Mathematics
Serial Year :
2008
Journal title :
Discrete Applied Mathematics
Record number :
886767
Link To Document :
بازگشت