Author/Authors :
Suarez، Susan S. نويسنده , , Ignotz، George G. نويسنده ,
Abstract :
Hyperactivated motility is observed among sperm in the mammalian oviduct near the time of ovulation. It is characterized by high-amplitude, asymmetrical flagellar beating and assists sperm in penetrating the cumulus oophorus and zona pellucida. Elevated intracellular Ca2+ is required for the initiation of hyperactivated motility, suggesting that calmodulin (CALM) and Ca2+/CALM-stimulated pathways are involved. A demembranated sperm model was used to investigate the role of CALM in promoting hyperactivation. Ejaculated bovine sperm were demembranated and immobilized by brief exposure to Triton X-100. Motility was restored by addition of reactivation medium containing MgATP and Ca2+, and hyperactivation was observed as free Ca2+ was increased from 50 nM to 1 (mu)M. However, when 2.5 mM Ca2+ was added to the demembranation medium to extract flagellar CALM, motility was not reactivated unless exogenous CALM was readded. The inclusion of anti-CALM IgG in the reactivation medium reduced the proportion hyperactivated in 1 (mu)M Ca2+ to 5%. Neither control IgG, the CALM antagonist W-7, nor a peptide directed against the CALM-binding domain of myosin light chain kinase (MYLK2) inhibited hyperactivation. However, when sperm were reactivated in the presence of CALM kinase II (CAMK2) inhibiting peptides, hyperactivation was reduced by 75%. Furthermore, an inhibitor of CAMK2, KN-93, inhibited hyperactivation without impairing normal motility of intact sperm. CALM and CAMK2 were immunolocalized to the acrosomal region and flagellum. These results indicate that hyperactivation is stimulated by a Ca2+/CALM pathway involving CAMK2.
Keywords :
Calcium , gamete biology , male reproductive tract , sperm motility and transport