Title of article :
Resistance distances and the Kirchhoff index in Cayley graphs Original Research Article
Author/Authors :
Xing Gao، نويسنده , , Yanfeng Luo، نويسنده , , Wenwen Liu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
2050
To page :
2057
Abstract :
In this paper, closed-form formulae for the Kirchhoff index and resistance distances of the Cayley graphs over finite abelian groups are derived in terms of Laplacian eigenvalues and eigenvectors, respectively. In particular, formulae for the Kirchhoff index of the hexagonal torus network, the multidimensional torus and the image-dimensional cube are given, respectively. Formulae for the Kirchhoff index and resistance distances of the complete multipartite graph are obtained.
Keywords :
Cayley graph , Kirchhoff index , Laplacian eigenvalue , Resistance distance
Journal title :
Discrete Applied Mathematics
Serial Year :
2011
Journal title :
Discrete Applied Mathematics
Record number :
887746
Link To Document :
بازگشت