Title of article :
Embeddings of N5 and the contiguous degrees Original Research Article
Author/Authors :
Klaus Ambos-Spies، نويسنده , , Peter A. Fejer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
38
From page :
151
To page :
188
Abstract :
Downey and Lempp (J. Symbolic Logic 62 (1997) 1215–1240) have shown that the contiguous computably enumerable (c.e.) degrees, i.e. the c.e. Turing degrees containing only one c.e. weak truth-table degree, can be characterized by a local distributivity property. Here we extend their result by showing that a c.e. degree a is noncontiguous if and only if there is an embedding of the nonmodular 5-element lattice View the MathML source into the c.e. degrees which maps the top to the degree a. In particular, this shows that local nondistributivity coincides with local nonmodularity in the computably enumerable degrees.
Keywords :
Computably enumerable , Degree , Contiguous , Distributive , Lattice embedding , Modular
Journal title :
Annals of Pure and Applied Logic
Serial Year :
2001
Journal title :
Annals of Pure and Applied Logic
Record number :
889808
Link To Document :
بازگشت