Title of article :
Supercritical-water heat transfer in a vertical bare tube Original Research Article
Author/Authors :
Supercritical-water heat transfer in a vertical bare tube Original Research Article، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
568
To page :
576
Abstract :
This paper presents selected results on heat transfer to supercritical water flowing upward in a 4-m-long vertical bare tube. Supercritical-water heat-transfer data were obtained at pressures of about 24 MPa, mass fluxes of 200–1500 kg/m2 s, heat fluxes up to 884 kW/m2 and inlet temperatures from 320 to 350 °C for several combinations of wall and bulk-fluid temperatures that were below, at or above the pseudocritical temperature. In general, the experiments confirmed that there are three heat-transfer regimes for forced-convective heat transfer to water flowing inside tubes at supercritical pressures: (1) normal heat-transfer regime characterized in general with heat transfer coefficients (HTCs) similar to those of subcritical convective heat transfer far from critical or pseudocritical regions, which are calculated according to the Dittus-Boelter type correlations; (2) deteriorated heat-transfer regime with lower values of the HTC and hence higher values of wall temperature within some part of a test section compared to those of the normal heat-transfer regime; and (3) improved heat-transfer regime with higher values of HTC and hence lower values of wall temperature within some part of a test section compared to those of the normal heat-transfer regime. This new heat-transfer dataset is applicable as a reference dataset for future comparison with supercritical-water bundle data and for a verification of scaling parameters between water and modeling fluids. Also, these HTC data were compared to those calculated with the original Dittus-Boelter and Bishop et al. correlations. The comparison showed that the Bishop et al. correlation, which uses the cross-section average Prandtl number, represents HTC profiles more correctly along the heated length of the tube than the Dittus-Boelter correlation. In general, the Bishop et al. correlation shows a fair agreement with the experimental HTCs outside the pseudocritical region, however, overpredicts by about 25% the experimental HTCs within the pseudocritical region. The Dittus-Boelter correlation can also predict the experimental HTCs outside the pseudocritical region, but deviates significantly from the experimental data within the pseudocritical region. It should be noted that both these correlations cannot be used for a prediction of HTCs within the deteriorated heat-transfer regime.
Journal title :
Nuclear Engineering and Design Eslah
Serial Year :
2010
Journal title :
Nuclear Engineering and Design Eslah
Record number :
895586
Link To Document :
بازگشت