Title of article :
TRIGA fuel burn-up calculations and its confirmation Original Research Article
Author/Authors :
R. Khan، نويسنده , , S. Karimzadeh، نويسنده , , H. B?ck، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
1043
To page :
1049
Abstract :
The Cesium (Cs-137) isotopic concentration due to irradiation of TRIGA Fuel Elements FE(s) is calculated and measured at the Atominstitute (ATI) of Vienna University of Technology (VUT). The Cs-137 isotope, as proved burn-up indicator, was applied to determine the burn-up of the TRIGA Mark II research reactor FE. This article presents the calculations and measurements of the Cs-137 isotope and its relevant burn-up of six selected Spent Fuel Elements SPE(s). High-resolution gamma-ray spectroscopy based non-destructive method is employed to measure spent fuel parameters. By the employment of this method, the axial distribution of Cesium-137 for six SPE(s) is measured, resulting in the axial burn-up profiles. Knowing the exact irradiation history and material isotopic inventory of an irradiated FE, six SPE(s) are selected for on-site gamma scanning using a special shielded scanning device developed at the ATI. This unique fuel inspection unit allows to scan each millimeter of the FE. For this purpose, each selected FE was transferred to the fuel inspection unit using the standard fuel transfer cask. Each FE was scanned at a scale of 1 cm of its active length and the Cs-137 activity was determined as proved burn-up indicator. The measuring system consists of a high-purity germanium detector (HPGe) together with suitable fast electronics and on-line PC data acquisition module. The absolute activity of each centimeter of the FE was measured and compared with reactor physics calculations. The ORIGEN2, a one-group depletion and radioactive decay computer code, was applied to calculate the activity of the Cs-137 and the burn-up of selected SPE. The deviation between calculations and measurements was in range from 0.82% to 12.64%.
Journal title :
Nuclear Engineering and Design Eslah
Serial Year :
2010
Journal title :
Nuclear Engineering and Design Eslah
Record number :
895643
Link To Document :
بازگشت