Title of article :
The pressurization transient analysis for Lungmen advanced boiling water reactor using RETRAN-02 Original Research Article
Author/Authors :
Chiung-Wen Tsai، نويسنده , , Chunkuan Shih، نويسنده , , Jong-Rong Wang، نويسنده , , Hao-Tzu Lin، نويسنده , , Su-Chin Cheng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
A RETRAN-02 model was devised and benchmarked against the preliminary safety analysis report (PSAR) for the Lungmen nuclear power plant roughly 10 years ago. During these years, the fuel design, some of the reactor vessel designs, and control systems have since been revised. The Lungmen RETRAN-02 model has also been modified with updated information when available. This study uses the analytical results of the final safety analysis report (FSAR) to benchmark the Lungmen RETRAN-02 plant model. Five transients, load rejection (LR), turbine trip (TT), main steam line isolation valves closure (MSIVC), loss of feedwater flow (LOFF), and one turbine control valve closure (OTCVC), were utilized to validate the Lungmen RETRAN-02 model. Moreover, due to the strong coupling effect between neutron dynamics and the thermal-hydraulic response during pressurization of transients, the one-dimensional kinetic model with the cross-section data library is used to simulate the coupling effect. The analytical results show good agreement in trends between the RETRAN-02 calculation and the Lungmen FSAR data. Based on the benchmark of these design-basis transients, the modified Lungmen RETRAN-02 model has been adjusted to a level of confidence for analysis of pressure increase transients. Analytical results indicate that the Lungmen advanced boiling water reactor (ABWR) design satisfied design criteria, i.e., vessel pressure and hot shutdown capability. However, a slight difference exists in the simulation of the water level for cases with changes in water levels. The Lungmen RETRAN-02 model tends to predict the change in water level at a slower rate than that in the Lungmen FSAR. There is also a slight difference in void reactivity response toward vessel pressure change in both simulations, which causes the calculated neutron flux before reactor shutdown to differ to some degree when the reactor experiences a rapid pressure increase. Further studies will be performed in the future using Lungmen startup test data.
Journal title :
Nuclear Engineering and Design Eslah
Journal title :
Nuclear Engineering and Design Eslah