Title of article :
Stable finite element methods with divergence augmentation for the stokes problem
Author/Authors :
K. Kim، نويسنده , , S. Lee، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
6
From page :
321
To page :
326
Abstract :
The mixed finite element approximation scheme with divergence augmentation for the Stokes problem is analyzed. We show that the Pk+1 − Pk−1 triangular elements or the Qk+1 − Qk−1 quadrilateral elements in R2, k ≥ 1, are stable with hk+View the MathML source convergence in H1-norm for velocity and hk convergence in L2-norm for pressure. Moreover, hk+1 convergence in H(div)-norm for velocity can be shown if the domain is convex. In R3, the cross-grid Pk+1 − Pk−1 tetrahedral elements, k ≥ 2, can be analyzed analogously for the approximation scheme with divergence augmentation and pressure stabilization. A numerical test which confirms the convergence analysis is presented.
Keywords :
Mixed finite element method , stabilization , Stokes problem
Journal title :
Applied Mathematics Letters
Serial Year :
2001
Journal title :
Applied Mathematics Letters
Record number :
897180
Link To Document :
بازگشت