Author/Authors :
Ruyun Ma، نويسنده , , Lishun Ren، نويسنده ,
Abstract :
Let aϵC[0,1], bϵC([0,1], (-∞, 0)). Let φ1(t) be the unique solution of the linear boundary value problem
u″(t)+s(t)u′(t)+b(t)u(t)=0, tϵ(0,1)
,
u(0)=0, u(1)=1
. We study the multiplicity of positive solutions for the m-point boundary value problems of Dirichlet type
u″+a(t)u′+b(t)u+g(t)f(u)=0
,
View the MathML source
, where ξiϵ (0,1) and αiϵ (0, ∞), iϵ {… , m−2), are given constants satisfying Σi=1m−1αiφ1(ξi) < 1. The methods employed are fixed-point index theory.
Keywords :
Multipoint boundary value problems , Fixed-point index , Existence , positive solutions