Title of article :
A linear ODE for the Omega function associated with the Euler function image and the Bernoulli function image
Original Research Article
Author/Authors :
P.L. Butzer، نويسنده , , Tibor K. Pog?ny، نويسنده , , H.M. Srivastava، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
The authors derive a linear ODE (ordinary differential equation) whose particular solution is the Butzer–Flocke–Hauss complete real-parameter Omega function Ω(w)Ω(w), which is associated with the complex-index Bernoulli function Bα(z)Bα(z) and with the complex-index Euler function Eα(z)Eα(z). This is accomplished here with the aid of an integral representation of the alternating Mathieu series View the MathML sourceS˜(w). A new integral representation and some two-sided bounding inequalities are also given for the Omega function.
Keywords :
Riemann’s Zeta function , Bessel function , Alternating Mathieu series , Complex-index Bernoulli function , Complex-index Euler function , Butzer–Flocke–Hauss complete Omega function , Integral representations of alternating Mathieu series , Integral representation of the Omega function , Dirichlet’s Eta function
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters