Title of article :
A theorem on Wiener-type invariants for isometric subgraphs of hypercubes Original Research Article
Author/Authors :
Sandi Klavzar، نويسنده , , Ivan Gutman، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
5
From page :
1129
To page :
1133
Abstract :
Let d(G,k)d(G,k) be the number of pairs of vertices of a graph GG that are at distance kk, λλ a real (or complex) number, and View the MathML sourceWλ(G)=∑k≥1d(G,k)kλ. It is proved that for a partial cube GG, Wλ+1(G)=|F|Wλ(G)−∑F∈FWλ(G∖F)Wλ+1(G)=|F|Wλ(G)−∑F∈FWλ(G∖F), where FF is the partition of E(G)E(G) induced by the Djoković–Winkler relation ΘΘ. This result extends a previously known result for trees and implies several relations for distance-based topological indices.
Keywords :
Graph distance , Wiener number , Hyper-Wiener index , Hypercube , Partial cube
Journal title :
Applied Mathematics Letters
Serial Year :
2006
Journal title :
Applied Mathematics Letters
Record number :
898251
Link To Document :
بازگشت