Title of article :
Spectral radii of graphs with given chromatic number Original Research Article
Author/Authors :
Lihua Feng، نويسنده , , Qiao Li، نويسنده , , Xiaodong Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
5
From page :
158
To page :
162
Abstract :
We consider the set Gn,kGn,k of graphs of order nn with the chromatic number k≥2k≥2. In this note, we prove that in Gn,kGn,k the Turán graph Tn,kTn,k has the maximal spectral radius; and PnPn if k=2k=2, CnCn if k=3k=3 and nn is odd, View the MathML sourceCn−11 if k=3k=3 and nn is even, View the MathML sourceKk(l) if k≥4k≥4 has the minimal spectral radius. Thus we answer a problem raised by Cao [D.S. Cao, Index function of graphs, J. East China Norm. Univ. Sci. Ed. 4 (1987) 1–8 (in Chinese). MR89m:05084] and Hong [Y. Hong, Bounds of eigenvalues of graphs, Discrete Math. 123 (1993) 65–74] in the affirmative.
Keywords :
Chromatic number , spectral radius
Journal title :
Applied Mathematics Letters
Serial Year :
2007
Journal title :
Applied Mathematics Letters
Record number :
898330
Link To Document :
بازگشت