Title of article :
On the number of empty convex quadrilaterals of a finite set in the plane
Original Research Article
Author/Authors :
Liping Wu، نويسنده , , Ren Ding، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
Let PP be a set of nn points in the plane, no three collinear. A convex polygon of PP is called empty if no point of PP lies in its interior. An empty partition of PP is a partition of PP into empty convex polygons. Let kk be a positive integer and View the MathML sourceNkπ(P) be the number of empty convex kk-gons in an empty partition ππ of PP. Define View the MathML sourcegk(P)≕max{Nkπ(P):πis an empty partition of P}, Gk(n)≕min{gk(P):|P|=n}Gk(n)≕min{gk(P):|P|=n}. We mainly study the case of k=4k=4 and get the result that View the MathML sourceG4(n)≥⌊9n38⌋. For specified View the MathML sourcen=21×2k−1−4(k≥1), we obtain the better bound View the MathML sourceG4(n)≥⌊5n−121⌋.
Keywords :
Convex position , Convex partition , Empty convex polygon , Empty partition , Convex hull
Journal title :
Applied Mathematics Letters
Journal title :
Applied Mathematics Letters