Title of article :
Lower bounds for the Hausdorff dimension of n-dimensional self-affine sets
Author/Authors :
William H. Paulsen، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 1995
Pages :
23
From page :
909
To page :
931
Abstract :
It was shown by Falconer [K. J. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Comb. Phil. Soc. 103, 339–350 (1988)] that there is an upper estimate for the Hausdorff dimension of a self-affine set embedded in n. This paper finds a corresponding lower bound for the Hausdorff dimension. We then show an example where the two bounds are very close.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
1995
Journal title :
Chaos, Solitons and Fractals
Record number :
898821
Link To Document :
بازگشت