Title of article :
Convergence of KAM iterations for counterterm problems
Author/Authors :
M. Govin، نويسنده , , M. Cibils، نويسنده ,
Issue Information :
ماهنامه با شماره پیاپی سال 1998
Pages :
9
From page :
419
To page :
427
Abstract :
We analyse two iterative KAM methods for counterterm problems for finite-dimensional matrices. The starting point for these methods is the KAM iteration for Hamiltonians linear in the action variable in classical mechanics. We compare their convergence properties when a perturbation parameter is varied. The first method has no fixed points beyond a critical value of the perturbation parameter. The second one has fixed points for arbitrarily large perturbations. We observe different domains of attraction separated by Julia sets.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
1998
Journal title :
Chaos, Solitons and Fractals
Record number :
898986
Link To Document :
بازگشت