• Title of article

    Chaos in periodically forced discrete-time ecosystem models

  • Author/Authors

    Danny Summers، نويسنده , , Brian P. Healey، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2000
  • Pages
    12
  • From page
    2331
  • To page
    2342
  • Abstract
    Natural populations whose generations are non-overlapping can be modelled by difference equations that describe how the populations evolve in discrete time-steps. These ecosystem models are, in general, nonlinear and contain system parameters that relate to such properties as the intrinsic growth-rate of a species. Typically, the parameters are kept constant. In this study, in order to simulate cyclic effects due to changes in environmental conditions, periodic forcing is applied to system parameters in four specific models, comprising three well-known, single-species models due to May, Moran–Ricker, and Hassell, and also a Maynard Smith predator–prey model. It is found that, in each case, a system that has simple (e.g., periodic) behavior in its unforced state can take on extremely complicated behavior, including chaos, when periodic forcing is applied, dependent on the values of the forcing amplitudes and frequencies. For each model, the application of forcing is found to produce an effective increase in the parameter space over which the system can behave chaotically. Bifurcation diagrams are constructed with the forcing amplitude as the bifurcation parameter, and these are observed to display rich structure, including chaotic bands with periodic windows, pitch-fork and tangent bifurcations, and attractor crises.
  • Journal title
    Chaos, Solitons and Fractals
  • Serial Year
    2000
  • Journal title
    Chaos, Solitons and Fractals
  • Record number

    899482