Title of article :
New interaction property of (2 + 1)-dimensional localized excitations from Darboux transformation
Author/Authors :
H.C. Hu، نويسنده , , S.Y. Lou، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
10
From page :
1207
To page :
1216
Abstract :
Using the binary Darboux transformation for the (2 + 1)-dimensional dispersive long wave equation, the “universal” variable separable formula is extended in a different way. From the extended formula, much more abundant localized excitations with arbitrary boundary conditions for the dispersive long wave equation can be obtained. The results obtained via the multi-linear variable separation approach are only a special case of the first step binary Darboux transformation. Two special interacting solutions are explicitly given. Especially, one of the examples exhibits a new interacting phenomenon: a localized solitary wave (dromion) can force an extended wave (solitoff) go back.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2005
Journal title :
Chaos, Solitons and Fractals
Record number :
901416
Link To Document :
بازگشت