Title of article :
Stability properties of non-negative solutions to a non-autonomous p-Laplacian equation
Author/Authors :
G.A. Afrouzi، نويسنده , , S.H. Rasouli، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2006
Pages :
5
From page :
1095
To page :
1099
Abstract :
We study the stability of non-negative stationary solutions of where Δp denotes the p-Laplacian operator defined by Δpz = div( z p−2 z); p > 2, Ω is a bounded domain in RN(N 1) with smooth boundary where α [0,1],h:∂Ω→R+ with h = 1 when α = 1, λ > 0, and g:Ω×[0,∞)→R is a continuous function. If g(x, u)/up−1 be strictly increasing (decreasing), we provide a simple proof to establish that every non-trivial non-negative solution is unstable (stable).
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2006
Journal title :
Chaos, Solitons and Fractals
Record number :
902195
Link To Document :
بازگشت