Title of article :
Global convergence of an adaptive minor component extraction algorithm
Author/Authors :
Dezhong Peng، نويسنده , , Zhang Yi، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
12
From page :
550
To page :
561
Abstract :
The convergence of neural networks minor component analysis (MCA) learning algorithms is crucial for practical applications. In this paper, we will analyze the global convergence of an adaptive minor component extraction algorithm via a corresponding deterministic discrete time (DDT) system. It is shown that if the learning rate satisfies certain conditions, almost all the trajectories of the DDT system are bounded and converge to minor component of the autocorrelation matrix of input data. Simulations are carried out to illustrate the results achieved.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2008
Journal title :
Chaos, Solitons and Fractals
Record number :
903018
Link To Document :
بازگشت