Title of article :
Strange distributionally chaotic triangular maps III
Author/Authors :
L. Paganoni، نويسنده , , J. Sm?tal، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
8
From page :
517
To page :
524
Abstract :
In the class of triangular maps of the square we consider the strongest notion of distributional chaos, DC1, originally introduced by Schweizer and Smítal [Trans Amer Math Soc 1994;344:737–854] for continuous maps of the interval. We show that a map is DC1 if F has a periodic orbit with period ≠ 2n, for any n 0. Consequently, a map in is DC1 if it has a homoclinic trajectory. This result is important since in general systems like , positive topological entropy itself does not imply DC1. It contributes to the solution of a long-standing open problem of A. N. Sharkovsky concerning classification of triangular maps of the square.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2008
Journal title :
Chaos, Solitons and Fractals
Record number :
903303
Link To Document :
بازگشت