Title of article :
Polarized Hessian covariant: Contribution to pattern formation in the
Föppl–von Kármán shell equations
Author/Authors :
Partha Guha a، نويسنده , , *، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Abstract :
We analyze the structure of the Föppl–von Kármán shell equations of linear elastic shell
theory using surface geometry and classical invariant theory. This equation describes the
buckling of a thin shell subjected to a compressive load. In particular, we analyze the role
of polarized Hessian covariant, also known as second transvectant, in linear elastic shell
theory and its connection to minimal surfaces. We show how the terms of the Föppl–
von Kármán equations related to in-plane stretching can be linearized using the hodograph
transform and relate this result to the integrability of the classical membrane equations.
Finally, we study the effect of the nonlinear second transvectant term in the Föppl–von
Kármán equations on the buckling configurations of cylinders.
Journal title :
Chaos, Solitons and Fractals
Journal title :
Chaos, Solitons and Fractals