Title of article :
Polarized Hessian covariant: Contribution to pattern formation in the Föppl–von Kármán shell equations
Author/Authors :
Partha Guha a، نويسنده , , *، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
10
From page :
2828
To page :
2837
Abstract :
We analyze the structure of the Föppl–von Kármán shell equations of linear elastic shell theory using surface geometry and classical invariant theory. This equation describes the buckling of a thin shell subjected to a compressive load. In particular, we analyze the role of polarized Hessian covariant, also known as second transvectant, in linear elastic shell theory and its connection to minimal surfaces. We show how the terms of the Föppl– von Kármán equations related to in-plane stretching can be linearized using the hodograph transform and relate this result to the integrability of the classical membrane equations. Finally, we study the effect of the nonlinear second transvectant term in the Föppl–von Kármán equations on the buckling configurations of cylinders.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2009
Journal title :
Chaos, Solitons and Fractals
Record number :
903841
Link To Document :
بازگشت