Title of article :
On generalized Fibonacci and Lucas polynomials
Author/Authors :
Ayse Nalli a، نويسنده , , Pentti Haukkanen، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Abstract :
Let hðxÞ be a polynomial with real coefficients. We introduce hðxÞ-Fibonacci polynomials
that generalize both Catalan’s Fibonacci polynomials and Byrd’s Fibonacci polynomials
and also the k-Fibonacci numbers, and we provide properties for these hðxÞ-Fibonacci polynomials.
We also introduce hðxÞ-Lucas polynomials that generalize the Lucas polynomials
and present properties of these polynomials. In the last section we introduce the matrix
QhðxÞ that generalizes the Q-matrix 1 1
1 0
whose powers generate the Fibonacci
numbers.
Journal title :
Chaos, Solitons and Fractals
Journal title :
Chaos, Solitons and Fractals