Title of article :
On generalized Fibonacci and Lucas polynomials
Author/Authors :
Ayse Nalli a، نويسنده , , Pentti Haukkanen، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
8
From page :
3179
To page :
3186
Abstract :
Let hðxÞ be a polynomial with real coefficients. We introduce hðxÞ-Fibonacci polynomials that generalize both Catalan’s Fibonacci polynomials and Byrd’s Fibonacci polynomials and also the k-Fibonacci numbers, and we provide properties for these hðxÞ-Fibonacci polynomials. We also introduce hðxÞ-Lucas polynomials that generalize the Lucas polynomials and present properties of these polynomials. In the last section we introduce the matrix QhðxÞ that generalizes the Q-matrix 1 1 1 0 whose powers generate the Fibonacci numbers.
Journal title :
Chaos, Solitons and Fractals
Serial Year :
2009
Journal title :
Chaos, Solitons and Fractals
Record number :
904237
Link To Document :
بازگشت