Title of article :
Quantum geometry of topological gravity
Author/Authors :
J. Ambjorn، نويسنده , , K.N. Anagnostopoulos، نويسنده , , T. Ichihara، نويسنده , , L. Jensen، نويسنده , , N. Kawamoto، نويسنده , , Y. Watabiki، نويسنده , , K. Yotsuji، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
8
From page :
177
To page :
184
Abstract :
We study a c = −2 conformal field theory coupled to two-dimensional quantum gravity by means of dynamical triangulations. We define the geodesic distance r on the triangulated surface with N triangles, and show that dim[rdH] = dim[N], where the fractal dimension dH = 3.58 ± 0.04. This result lends support to the conjecture dH = −2α1α−1, where α−n is the gravitational dressling exponent of a spin-less primary field of conformal weight (n + 1, n + 1), and it disfavors the alternative prediction dH = −2γstr. On the other hand, we find dim[l] = dim[r2] with good accuracy, where l is the length of one of the boundaries of a circle with (geodesic) radius r, i.e. the length l has an anomalous dimension relative to the area of the surface. It is further shown that the spectral dimension ds = 1.980±0.014 for the ensemble of (triangulated) manifolds used. The results are derived using finite size scaling and a very efficient recursive sampling technique known previously to work well for c = −2.
Journal title :
PHYSICS LETTERS B
Serial Year :
1997
Journal title :
PHYSICS LETTERS B
Record number :
908048
Link To Document :
بازگشت