Author/Authors :
M.E. Berbenni-Bitsch، نويسنده , , M. G?ckeler، نويسنده , , T. Guhr، نويسنده , , A.D. Jackson، نويسنده , , J.-Z. Ma، نويسنده , , S. Meyer، نويسنده , , A. Sch?fer، نويسنده , , H.A. Weidenmuller، نويسنده , , T. Wettig، نويسنده , , T. Wilke، نويسنده ,
Abstract :
The spectrum of the Dirac operator near zero virtuality obtained in lattice gauge simulations is known to be universally described by chiral random matrix theory. We address the question of the maximum energy for which this universality persists. For this purpose, we analyze large ensembles of complete spectra of the Euclidean Dirac operator for staggered fermions. We calculate the disconnected scalar susceptibility and the microscopic number variance for the chiral symplectic ensemble of random matrices and compare the results with lattice Dirac spectra for quenched SU(2). The crossover to a non-universal regime is clearly identified and found to scale with the square of the linear lattice size and with fπ2, in agreement with theoretical expectations.
Keywords :
Lattice simulations of QCD , Chiral random matrix models , Spectrum of the Dirac operator , Scalar susceptibility , Universal behaviour , Thouless energy