Title of article :
Logarithmic conformal field theory solutions of two dimensional magnetohydrodynamics
Author/Authors :
Spyros Skoulakis، نويسنده , , P. Steven Thomas، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
10
From page :
301
To page :
310
Abstract :
We consider the application of logarithmic conformal field theory in finding solutions to the turbulent phases of 2-dimensional models of magnetohydrodynamics. These arise upon dimensional reduction of standard (infinite conductivity) 3-dimensional magnetohydrodynamics, after taking various simplifying limits. We show that solutions of the corresponding Hopf equations and higher order integrals of motion can be found within the solutions of ordinary turbulence proposed by Flohr, based on the tensor product of the logarithmic extension c̃6,1 of the non-unitary minimal model c6,1. This possibility arises because of the existence of a continuous hidden symmetry present in the latter models, and the fact that there appear several distinct dimension-1 and -2 primary fields.
Journal title :
PHYSICS LETTERS B
Serial Year :
1998
Journal title :
PHYSICS LETTERS B
Record number :
910447
Link To Document :
بازگشت