Title of article :
Logarithmic conformal field theory and Seiberg-Witten models
Author/Authors :
Michael A.I. Flohr، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
11
From page :
179
To page :
189
Abstract :
The periods of arbitrary abelian forms on hyperelliptic Riemann surfaces, in particular the periods of the meromorphic Seiberg-Witten differential λSW, are shown to be in one-to-one correspondence with the conformal blocks of correlation functions of the rational logarithmic conformal field theory with central charge c=c2,1=−2. The fields of this theory precisely simulate the branched double covering picture of a hyperelliptic curve, such that generic periods can be expressed in terms of certain generalised hypergeometric functions, namely the Lauricella functions of type FD.
Journal title :
PHYSICS LETTERS B
Serial Year :
1998
Journal title :
PHYSICS LETTERS B
Record number :
910801
Link To Document :
بازگشت