Title of article :
Perturbative equivalent theorem in q-deformed dynamics
Author/Authors :
Jian-zu Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
5
From page :
210
To page :
214
Abstract :
Corresponding to two ways of realizing the q-deformed Heisenberg algebra by the undeformed variables there are two q-perturbative Hamiltonians with the additional momentum-dependent interactions, one originates from the perturbative expansion of the potential, the other originates from that of the kinetic energy term. At the level of operators, these two q-perturbative Hamiltonians are different. In order to establish a reliable foundation of the perturbative calculations in q-deformed dynamics, except examples of the harmonic-oscillator and the Morse potential demonstrated before, the general q-perturbative equivalent theorem is demonstrated, which states that for any regular potential which is singularity free the expectation values of two q-perturbative Hamiltonians in the eigenstates of the undeformed Hamiltonian are equivalent. For the q-deformed “free” particle case, the perturbative Hamiltonian originated from the kinetic energy term still keeps its general expression, but it does not lead to energy shift.
Journal title :
PHYSICS LETTERS B
Serial Year :
2001
Journal title :
PHYSICS LETTERS B
Record number :
914735
Link To Document :
بازگشت