Title of article :
Minimum-entropy, PDF approximation, and kernel selection for measurement estimation
Author/Authors :
J.I.، De la Rosa, نويسنده , , G.A.، Fleury, نويسنده , , M.E.، Davoust, نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-1008
From page :
1009
To page :
0
Abstract :
The purpose of this paper is to investigate the selection of an appropriate kernel to be used in a recent robust approach called minimum-entropy estimator (MEE). This MEE estimator is extended to measurement estimation and pdf approximation when (rho)(e) is unknown. The entropy criterion is constructed on the basis of a symmetrized kernel estimate (rho)/sub n,h/(e) of (rho)(e). The MEE performance is generally better than the Maximum Likelihood (ML) estimator. The bandwidth selection procedure is a crucial task to assure consistency of kernel estimates. Moreover, recent proposed Hilbert kernels avoid the use of bandwidth, improving the consistency of the kernel estimate. A comparison between results obtained with normal, cosine and Hilbert kernels is presented.
Keywords :
leukemia
Journal title :
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
Serial Year :
2003
Journal title :
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
Record number :
91601
Link To Document :
بازگشت