Title of article :
Error estimates and Lipschitz constants for best approximation in continuous function spaces
Author/Authors :
M. Bartelt، نويسنده , , W. Li، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1995
Pages :
14
From page :
255
To page :
268
Abstract :
We use a structural characterization of the metric projection PG(f), from the continuous function space to its one-dimensional subspace G, to derive a lower bound of the Hausdorff strong unicity constant (or weak sharp minimum constant) for PG and then show this lower bound can be attained. Then the exact value of Lipschitz constant for PG is computed. The process is a quantitative analysis based on the Gâteaux derivative of PG, a representation of local Lipschitz constants, the equivalence of local and global Lipschitz constants for lower semicontinuous mappings, and construction of functions.
Keywords :
Error bounds , Lipschitz constants , Strong uniqueness , Gâteaux derivatives , Metric projections
Journal title :
Computers and Mathematics with Applications
Serial Year :
1995
Journal title :
Computers and Mathematics with Applications
Record number :
917659
Link To Document :
بازگشت