Title of article :
Resonances of dynamical systems and Fredholm-Riesz operators on rigged Hilbert spaces
Author/Authors :
O. F. Bandtlow، نويسنده , , I. Antoniou، نويسنده , , Z. Suchanecki، نويسنده ,
Issue Information :
هفته نامه با شماره پیاپی سال 1997
Pages :
8
From page :
95
To page :
102
Abstract :
Resonances of dynamical systems are defined as the singularities of the analytically continued resolvent of the restriction of the Frobenius-Perron operator to suitable test-function spaces. A sufficient condition for resonances to arise from a meromorphic continuation to the entire plane is that the Frobenius-Perron operator is a Fredholm-Riesz operator on a rigged Hilbert space. After a discussion of spectral theory in locally convex topological vector spaces, we illustrate the approach for a simple chaotic system, namely the Rényi map.
Keywords :
Resonances , Chaotic maps , Fredholm-Riesz operators , Rigged Hilbert spaces
Journal title :
Computers and Mathematics with Applications
Serial Year :
1997
Journal title :
Computers and Mathematics with Applications
Record number :
918359
Link To Document :
بازگشت