Title of article :
Bounds for positive solutions for a focal boundary value problem
Author/Authors :
F. Atici، نويسنده , , A. Peterson، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1998
Pages :
9
From page :
99
To page :
107
Abstract :
We will be concerned with the focal boundary value problem (−1)nΔn[p(t)Δny(t − n)] = f(h,t,y(t), ..., Δn−1y(t)),Δiy(0) = Δn+iy(b + 1) = 0, 0 → i → n − 1. Using cone theory in a Banach space, we show that under certain assumptions on f, this focal boundary value problem has two positive solutions. In the special case −Δ2y(t − 1) = h2[yα(t) + yβ(t)], y(0) = δ(b + 1) = 0, where 0 < α < 1 < β, we are able to exhibit upper and lower bounds for these two positive solutions.
Keywords :
Cone theory , Disfocal , Difference equation
Journal title :
Computers and Mathematics with Applications
Serial Year :
1998
Journal title :
Computers and Mathematics with Applications
Record number :
918428
Link To Document :
بازگشت