Title of article :
Solution of a transcendental eigenvalue problem via interval analysis
Author/Authors :
L. E. Bateson، نويسنده , , M. A. Kelmanson، نويسنده , , Daniel C. Knudsen، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 1999
Abstract :
A knowledge of the complex roots λ of the transcendental eigenvalue equation
sinλα=±λsinα
is essential in the analysis of the slow viscous fluid flow in the neighbourhood of a sharp corner which subtends an angle α ε (0, 2π] to the fluid. Existing methods for finding all roots λ essentially require an a priori knowledge of the solution structure; given that {λ1, λ2, …, λm} are known, glm+1 is determined via iterations, and/or a solution procedure initiated by λm. We present herein a general interval analysis method which exhaustively finds all roots λ via only the original eigenvalue equation: no other information is required. The interval-analysis method automatically guarantees root existence and uniqueness while simultaneously providing error bounds.
Keywords :
Interval analysis , Biharmonic equation , Newtonיs method
Journal title :
Computers and Mathematics with Applications
Journal title :
Computers and Mathematics with Applications