Title of article :
Right-indefinite half-linear Sturm–Liouville problems
Author/Authors :
Lingju Kong، نويسنده , , Qingkai Kong، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
11
From page :
2554
To page :
2564
Abstract :
We study the regular half-linear Sturm–Liouville equation where r(u)=ur−1u, r>0, , and p>0 a.e. on J. Let N(λ) denote the number of zeros in J of a nontrivial solution of the equation. Asymptotic formulas are found for N(λ) when w≥0 a.e. and w changes sign, respectively. As a consequence, the existence and asymptotics of real eigenvalues are established for the half-linear Sturm–Liouville problem consisting of the above equation and a separated boundary condition when w changes sign. Our results cover the work of Atkinson and Mingarelli on second-order linear equations as a special case. The generalized Prüfer transformation plays a key role in the proofs.
Keywords :
Half-linear , eigenvalues , Sturm–Liouville problems , eigenfunctions , asymptotics
Journal title :
Computers and Mathematics with Applications
Serial Year :
2008
Journal title :
Computers and Mathematics with Applications
Record number :
920851
Link To Document :
بازگشت