Title of article :
A multi-step differential transform method and application to
non-chaotic or chaotic systems
Author/Authors :
Zaid M. Odibat، نويسنده , , Cyrille BERTELLE، نويسنده , , M.A. Aziz-Alaoui c، نويسنده , , Gerard H.E. Duchampd، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
The differential transform method (DTM) is an analytical and numerical method for solving
a wide variety of differential equations and usually gets the solution in a series form. In this
paper, we propose a reliable new algorithm of DTM, namely multi-step DTM, which will
increase the interval of convergence for the series solution. The multi-step DTM is treated
as an algorithm in a sequence of intervals for finding accurate approximate solutions for
systems of differential equations. This new algorithm is applied to Lotka Volterra, Chen and
Lorenz systems. Then, a comparative study between the new algorithm, multi-step DTM,
classical DTM and the classical Runge Kutta method is presented. The results demonstrate
reliability and efficiency of the algorithm developed.
Keywords :
Differential transform method , Multi-step differential transform method , Lotka–Volterra system , Chen system , Lorenz system
Journal title :
Computers and Mathematics with Applications
Journal title :
Computers and Mathematics with Applications