Title of article :
Recursive formulation of the matrix Padé approximation in packed
storage
Author/Authors :
M. Kaliyappan a، نويسنده , , S. Ponnusamyb، نويسنده , , S. Sundar c، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
The Extended Euclidean algorithm for matrix Padé approximants is applied to compute
matrix Padé approximants when the coefficient matrices of the input matrix polynomial
are triangular. The procedure given by Bjarne S. Anderson et al. for packing a triangular
matrix in recursive packed storage is applied to pack a sequence of lower triangular
matrices of a matrix polynomial in recursive packed storage. This recursive packed storage
for a matrix polynomial is applied to compute matrix Padé approximants of the matrix
polynomial using the Matrix Padé Extended Euclidean algorithm in packed form. The CPU
time and memory comparison, in computing the matrix Padé approximants of a matrix
polynomial, between the packed case and the non-packed case are described in detail.
Keywords :
Recursive packed storage , Matrix Padé approximants
Journal title :
Computers and Mathematics with Applications
Journal title :
Computers and Mathematics with Applications